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CHAPTER 1

Table of Contents

1.1 Background Information

While detailed information on these approaches to discretizing infinite dimensional (or continuous) optimal control
problems can be found (and comes from) this Ph.D. dissertation, this related journal publication and this technical
report, the Background Information section will cover some basics.

1.1.1 Direct Transcription of Optimal Control Problems

Let 𝑁𝑡 + 1 be the total number of discrete time points.

1.1.2 Time Marching Methods

Euler Method

Trapezoidal Method

1.1.3 Pseudospectral Methods

Change of Interval

To can change the limits of the integration (in order to apply Quadrature), we introduce 𝜏 ∈ [−1,+1] as a new
independent variable and perform a change of variable for 𝑡 in terms of 𝜏 , by defining:

𝜏 =
2

𝑡𝑁𝑡
− 𝑡0

𝑡− 𝑡𝑁𝑡
+ 𝑡0

𝑡𝑁𝑡
− 𝑡0

Polynomial Interpolation

Select a set of 𝑁𝑡 + 1 node points:

𝜏 = [𝜏0, 𝜏1, 𝜏2, ....., 𝜏𝑁𝑡 ]

• These none points are just numbers

1

http://etd.fcla.edu/UF/UFE0042778/darby_c.pdf
http://vdol.mae.ufl.edu/JournalPublications/TOMS-GPOPS-II-August-2013.pdf
http://systemdesign.illinois.edu/publications/Her15a.pdf
http://systemdesign.illinois.edu/publications/Her15a.pdf
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– Increasing and distinct numbers ∈ [−1,+1]

A unique polynomial 𝑃 (𝜏) exists (i.e. ∃!𝑃 (𝜏)) of a maximum degree of 𝑁𝑡 where:

𝑓(𝜏𝑘) = 𝑃 (𝜏𝑘), 𝑘 = 0, 1, 2, ....𝑁𝑡

• So, the function evaluated at 𝜏𝑘 is equivalent the this polynomial evaluated at that point.

But, between the intervals, we must approximate 𝑓(𝜏) as:

𝑓(𝜏) ≈ 𝑃 (𝜏) =

𝑁𝑡∑︁
𝑘=0

𝑓(𝜏𝑘)𝜑𝑘(𝜏)

with 𝜑𝑘() are basis polynomials that are built by interpolating 𝑓(𝜏) at the node points.

Approximating Derivatives

We can also approximate the derivative of a function 𝑓(𝜏) as:

d𝑓(𝜏)

d𝜏
= 𝑓(𝜏𝑘) ≈ 𝑃̇ (𝜏𝑘) =

𝑁𝑡∑︁
𝑖=0

𝐷𝑘𝑖𝑓(𝜏𝑖)

With D is a (𝑁𝑡 + 1) × (𝑁𝑡 + 1) differentiation matrix that depends on:

• values of 𝜏

• type of interpolating polynomial

Now we have an approximation of 𝑓(𝜏𝑘) that depends only on 𝑓(𝜏)!

Approximating Integrals

The integral we are interested in evaluating is:∫︁ 𝑡𝑁𝑡

𝑡0

𝑓(𝑡)d𝑡 =
𝑡𝑁𝑡

− 𝑡0
2

∫︁ 1

−1

𝑓(𝜏𝑘)d𝜏

This can be approximated using quadrature: ∫︁ 1

−1

𝑓(𝜏𝑘)d𝜏

𝑁𝑡∑︁
𝑘=0

𝑤𝑘𝑓(𝜏𝑘)

where 𝑤𝑘 are quadrature weights and depend only on:

• values of 𝜏

• type of interpolating polynomial
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Legendre Pseudospectral Method

• Polynomial

Define an N order Legendre polynomial as:

𝐿𝑁 (𝜏) =
1

2𝑁𝑁 !

d𝑛

d𝜏𝑁
(𝜏2 − 1)𝑁

• Nodes

𝜏𝑘 =

⎧⎪⎨⎪⎩
− 1, if 𝑘 = 0

kth root 𝑜𝑓𝐿̇𝑁𝑡(𝜏), if 𝑘 = 1, 2, 3, ..𝑁𝑡 − 1

+ 1 if 𝑘 = 𝑁𝑡

(1.1)

• Differentiation Matrix

• Interpolating Polynomial Function

1.1.4 hp-psuedospectral method

To solve the integral constraints within the optimal control problem we employs the hp-pseudospectral method. The
hp-psuedospectral method is an form of Gaussian Quadrature, which uses multi-interval collocation points.

Single Phase Optimal Control

Find:

• The state: x(𝑡)

• The control: u(𝑡)

• The integrals: q

• The initial time: 𝑡0

• The final time: 𝑡𝑓

To Minimize:

𝐽 = Φ(x(𝑡0),x(𝑡𝑓 ),q, 𝑡0, 𝑡𝑓 )

That Satisfy the Following Constraints:

• Dynamic Constraints:

dx

d𝑡
= 𝜓(x(𝑡),u(𝑡), 𝑡)

• Inequality Path Constraints:

c𝑚𝑖𝑛 <= c(x(𝑡),u(𝑡), 𝑡) <= c𝑚𝑎𝑥

• Integral Constraints:

𝑞𝑖 =

∫︁ 𝑡𝑓

𝑡0

Υ𝑖(x(𝑡),u(𝑡), 𝑡) d𝑡, (𝑖 = 1, ...., 𝑛𝑞)

1.1. Background Information 3
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• Event Constraints:

b𝑚𝑖𝑛 <= b(x(𝑡0),x(𝑡𝑓 ), 𝑡𝑓 ,q) <= b𝑚𝑎𝑥

Change of Interval

To can change the limits of the integration (in order to apply Quadrature), we introduce 𝜏 ∈ [−1,+1] as a new
independent variable and perform a change of variable for 𝑡 in terms of 𝜏 , by defining:

𝑡 =
𝑡𝑓 − 𝑡0

2
𝜏 +

𝑡𝑓 + 𝑡0
2

The optimal control problem defined above (TODO: figure out equation references), is now redefined in terms of 𝜏 as:

Find:

• The state: x(𝜏)

• The control: u(𝜏)

• The integrals: q

• The initial time: 𝑡0

• The final time: 𝑡𝑓

To Minimize:

𝐽 = Φ(x(−1),x(+1),q, 𝑡0, 𝑡𝑓 )

That Satisfy the Following Constraints:

• Dynamic Constraints:

dx

d𝜏
=
𝑡𝑓 − 𝑡0

2
𝜓(x(𝜏),u(𝜏), 𝜏, 𝑡0, 𝑡𝑓 )

• Inequality Path Constraints:

c𝑚𝑖𝑛 <= c(x(𝜏),u(𝜏), 𝜏, 𝑡0, 𝑡𝑓 ) <= c𝑚𝑎𝑥

• Integral Constraints:

𝑞𝑖 =
𝑡𝑓 − 𝑡0

2

∫︁ +1

−1

Υ𝑖(x(𝜏),u(𝜏), 𝜏, 𝑡0, 𝑡𝑓 ) d𝜏, (𝑖 = 1, ...., 𝑛𝑞)

• Event Constraints:

b𝑚𝑖𝑛 <= b(x(−1),x(+1), 𝑡𝑓 ,q) <= b𝑚𝑎𝑥

Divide The Interval 𝜏 ∈ [−1,+1]

The interval 𝜏 ∈ [−1,+1] is now divided into a mesh of K mesh intervals as:

[𝑇𝑘−1, 𝑇𝑘], 𝑘 = 1, ..., 𝑇𝐾

with (𝑇0, ..., 𝑇𝐾) being the mesh points; which satisfy:

−1 = 𝑇0 < 𝑇1 < 𝑇2 < 𝑇3 < ........... < 𝑇𝐾−1 < 𝑇𝐾 = 𝑇𝑓 = +1

4 Chapter 1. Table of Contents
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Rewrite the Optimal Control Problem using the Mesh

Find:

• The state : x(𝑘)(𝜏) in mesh interval k

• The control: u(𝑘)(𝜏) in mesh interval k

• The integrals: q

• The initial time: 𝑡0

• The final time: 𝑡𝑓

To Minimize:

𝐽 = Φ(x(1)(−1),x(𝐾)(+1),q, 𝑡0, 𝑡𝑓 )

That Satisfy the Following Constraints:

• Dynamic Constraints:

dx(𝑘)(𝜏 (𝑘))

d𝜏 (𝑘)
=
𝑡𝑓 − 𝑡0

2
𝜓(x(𝑘)(𝜏 (𝑘)),u(𝑘)(𝜏 (𝑘)), 𝜏 (𝑘), 𝑡0, 𝑡𝑓 ), (𝑘 = 1, ...,𝐾)

• Inequality Path Constraints:

c𝑚𝑖𝑛 <= c(x(𝑘)(𝜏 (𝑘)),u(𝑘)(𝜏 (𝑘)), 𝜏 (𝑘), 𝑡0, 𝑡𝑓 ) <= c𝑚𝑎𝑥, (𝑘 = 1, ...,𝐾)

• Integral Constraints:

𝑞𝑖 =
𝑡𝑓 − 𝑡0

2

𝐾∑︁
𝑘=1

∫︁ 𝑇𝑘

𝑇𝑘−1

Υ𝑖(x
(𝑘)(𝜏 (𝑘)),u(𝑘)(𝜏 (𝑘)), 𝜏, 𝑡0, 𝑡𝑓 ) d𝜏, (𝑖 = 1, ...., 𝑛𝑞, 𝑘 = 1, ...,𝐾)

• Event Constraints:

b𝑚𝑖𝑛 <= b(x(1)(−1),x(𝐾)(+1), 𝑡𝑓 ,q) <= b𝑚𝑎𝑥

• State Continuity

– Also, we must now constrain the state to be continuous at each interior mesh point (𝑇1, ...𝑇𝑘−1) by en-
forcing:

y𝑘(𝑇𝑘) = y𝑘+1(𝑇𝑘)

Optimal Control Problem Approximation

The optimal control problem will now be approximated using the Radau Collocation Method. In collocation methods,
the state and control are discretized at particular points within the selected time interval. Once this is done the problem
can be transcribed into a nonlinear programming problem (NLP) and solved using standard solvers for these types of
problems, such as IPOPT or KNITRO.

For each mesh interval 𝑘 ∈ [1, ..,𝐾]:

x(𝑘)(𝜏) ≈ X(𝑘)(𝜏) =

𝑁𝑘+1∑︁
𝑗=1

X
(𝑘)
𝑗

dℓ𝑘𝑗 (𝜏)

d𝜏
(1.2)

𝑤ℎ𝑒𝑟𝑒, (1.3)

ℓ𝑘𝑗 (𝜏) =
∏︀𝑁𝑘+1

𝑙=1
𝑙 ̸=𝑗

𝜏−𝜏
(𝑘)
𝑙

𝜏
(𝑘)
𝑗 −𝜏

(𝑘)
𝑙

(1.4)

1.1. Background Information 5



NLOptControl Documentation, Release 0.0.1-rc1

also,

• ℓ(𝑘)𝑗 (𝜏), (𝑗 = 1, ..., 𝑁𝑘 + 1) is a basis of Lagrange polynomials

• (𝜏𝑘1 , ....., 𝜏
(𝑘)
𝑁𝑘

) are the Legendre-Gauss-Radau collocation points in mesh interval k

– defined on the subinterval 𝜏 (𝑘) ∈ [𝑇𝑘−1, 𝑇𝑘]

– 𝜏
(𝑘)
𝑁𝑘+1 = 𝑇𝑘 is a noncollocated point

1.2 Package Functionality

1.2.1 Code Development

Approximation of Optimal Control Problem

Completed Functionality

Legendre Gaussian Method

Single Interval

Basic Problem Definition The code developed in this package uses the Legendre-Pseudospectral Method with
Lagrange-Gauss-Lobatto (LGL) nodes. A basic description of this implementation presented in this documentation at
Pseudospectral Methods and more much more detailed information can be found in both [A2] and [A1].

Examples

In these examples we use:

• Legendre-Gauss-Lobatto (LGL) nodes

• Single interval approximations

• Approximate integrals in the range of [-1,1]

• Approximate derivatives in the range of [-1,1]

These examples can be:

• Viewed remotely on using the jupyter nbviewer.

• Viewed locally and interacted using IJulia

To do this in julia type:

using IJulia
notebook(dir=Pkg.dir("NLOptControl/examples/LGL_SI/"))

6 Chapter 1. Table of Contents
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Example 1 In the first example, we borrow a problem from Wikipedia.

where:

𝑦(𝑥) = 7𝑥3 − 8𝑥2 − 3𝑥+ 3

Difference between the Wikipedia Example and this Example

The difference between Wikipedia example and this one is that the Wikipedia example uses Gauss-Legendre
Quadrature while the code developed in this package uses Legendre-Pseudospectral Method with Lagrange-
Gauss-Lobatto (LGL) nodes. Information on the difference between these methods and many more can be
found in both [B2] and [B1].

• Conclusions

– We are able to exactly determine the integral

References

Example 2 In the second example, we increase the order of the polynomial from 3 to 7. Then we increase N until
we achieve accurate enough results.

where:

𝑦(𝑥) = 7𝑥7 − 8𝑥6 − 3𝑥5 + 3𝑥4 + 7𝑥3 − 8𝑥2 − 3𝑥+ 3

1.2. Package Functionality 7
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Test 2a

8 Chapter 1. Table of Contents
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Test 2b

1.2. Package Functionality 9
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Test 2c

Conclusions

• We are able to determine the integral very accurately when we increase N to 4

Example 3 In the third example, we approximate the derivative of a function by Approximating Derivatives.

Test 3a In this test:

𝑦(𝑥) = 3𝑥2 − 3𝑥+ 3

10 Chapter 1. Table of Contents
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• We are able to determine the derivative exactly when they are linear functions is 𝑁 = 3

Test 3b In this test we increase the order of y(x) to:

𝑦(𝑥) = 3𝑥3 + 3𝑥2 − 3𝑥+ 3

1.2. Package Functionality 11
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• When the derivative function becomes nonlinear

– We can no longer calculate it exactly everywhere

– There are only 𝑁𝑡+1 = 4 node points

– To calculate the derivative exactly we would need an amount of 𝑁𝑡+1

• We are still calculating the integral exactly and should be able to with 𝑁 = 3 until 𝑥5

Test 3c In this test we increase the order of y(x) to:

𝑦(𝑥) = 3𝑥4 + 3𝑥3 + 3𝑥2 − 3𝑥+ 3

12 Chapter 1. Table of Contents
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• We are still calculating the integral exactly and should be able to with 𝑁 = 3 until 𝑥5

Test 3d In this test we increase the order of y(x) to:

𝑦(𝑥) = 3𝑥5 + 3𝑥4 + 3𝑥3 + 3𝑥2 − 3𝑥+ 3

1.2. Package Functionality 13
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• We are still calculating the integral exactly with 𝑁 = 3!!

• The percent error is = 0.000000000000000000 %

Test 3e In this test we increase the order of y(x) to:

𝑦(𝑥) = 3𝑥6 + 3𝑥5 + 3𝑥4 + 3𝑥3 + 3𝑥2 − 3𝑥+ 3

14 Chapter 1. Table of Contents
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• As expected, we are not still calculating the integral exactly with 𝑁 = 3!!

• The percent error is = -1.818181818181822340 %

References

Developing Code

This site documents current progress and functionality that is being developed.

Current Focus

1.2. Package Functionality 15
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Old Records This is for documentation that was created where something was still being worked on where:

1. Everything was not working as expected, but has now been fixed or is obsolete.

2. Removed Functionality

1.3 Bibliography

16 Chapter 1. Table of Contents



Bibliography

[B1] Daniel Ronald Herber. Basic implementation of multiple-interval pseudospectral methods to solve optimal con-
trol problems. UIUC-ESDL-2015-01, 2015.

[B2] Jie Shen, Tao Tang, and Li-Lian Wang. Spectral methods: algorithms, analysis and applications. volume 41.
Springer Science & Business Media, 2011.

[A1] Daniel Ronald Herber. Basic implementation of multiple-interval pseudospectral methods to solve optimal con-
trol problems. UIUC-ESDL-2015-01, 2015.

[A2] Jie Shen, Tao Tang, and Li-Lian Wang. Spectral methods: algorithms, analysis and applications. volume 41.
Springer Science & Business Media, 2011.

17


	Table of Contents
	Background Information
	Package Functionality
	Bibliography

	Bibliography

