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Background Information

While detailed information on these approaches to discretizing infinite dimensional (or continuous) optimal control problems can be found (and comes from) this Ph.D. dissertation [http://etd.fcla.edu/UF/UFE0042778/darby_c.pdf], this related journal publication [http://vdol.mae.ufl.edu/JournalPublications/TOMS-GPOPS-II-August-2013.pdf] and this technical report [http://systemdesign.illinois.edu/publications/Her15a.pdf], the Background Information section will cover some basics.
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Lagrange Interpolating Polynomials


Definition



	given \((N+1)\) unique data points
	\((x_0,y_0),(x_1,y_1),....,(x_N,y_N)\)





	we can create an \(N^{th}\) order Lagrange interpolating polynomial







\[P_n(x) = \sum_{i=0}^N \mathcal{L}_i(x)f(x_i)\]


	where,

	
\[\begin{eqnarray}
  f(x_0) = y_0\\
  f(x_1) = y_1\\
  .\\
  .\\
  f(x_i) = y_i\\
  .\\
  f(x_N) = y_N
 \end{eqnarray}\]




So, we are just multiplying by the given \(y_i\) values.




Lagrange Basis Polynomials

More information on Lagrange Basis Polynomials is here [https://en.wikipedia.org/wiki/Vandermonde_matrix]


\[\begin{split}\mathcal{L}_i(x)=\prod_{\substack{j=0 \\ j\neq i}}^{N}\frac{x-x_j}{x_i-x_j}\end{split}\]


	so expanding this,

	
\[\begin{eqnarray}
\mathcal{L}_i(x) &=\frac{x-x_0}{x_i-x_0}\frac{x-x_1}{x_i-x_1}...\\
                 &...\frac{x-x_{i-1}}{x_i-x_{i-1}}...\\
                 &...\frac{x-x_{i+1}}{x_i-x_{i+1}}...\\
                 &...\frac{x-x_N}{x_i-x_N}
\end{eqnarray}\]




Notice that we do not include the term where \(i==j\)!

Please see Functionality for details on implementation.
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Direct Transcription of Optimal Control Problems

Let \(N_t+1\) be the total number of discrete time points.
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Time Marching Methods


Euler Method




Trapezoidal Method
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Pseudospectral Methods


Change of Interval

To can change the limits of the integration (in order to apply Quadrature), we introduce \(\tau \in [-1,+1]\) as a new independent variable and perform a change of variable for \(t\) in terms of \(\tau\), by defining:



\[\tau = \frac{2}{t_{{N}_{t}}-t_0}t - \frac{t_{N_t}+t_0}{t_{N_t}-t_0}\]







Polynomial Interpolation

Select a set of \(N_t+1\) node points:



\[\mathbf{\tau} = [\tau_0,\tau_1,\tau_2,.....,\tau_{N_t}]\]





	These none points are just numbers
	Increasing and distinct numbers \(\in [-1,+1]\)







A unique polynomial \(P(\tau)\) exists (i.e. \(\exists! P(\tau)\)) of a maximum degree of \(N_t\) where:



\[f(\tau_k)=P(\tau_k),\;\;\;k={0,1,2,....N_t}\]





	So, the function evaluated at \(\tau_k\) is equivalent the this polynomial evaluated at that point.



But, between the intervals, we must approximate \(f(\tau)\) as:



\[f(\tau) \approx P(\tau)= \sum_{k=0}^{N_t}f(\tau_k)\phi_k(\tau)\]




with \(\phi_k(•)\) are basis polynomials that are built by interpolating \(f(\tau)\) at the node points.




Approximating Derivatives

We can also approximate the derivative of a function \(f(\tau)\) as:


\[\frac{\mathrm{d}f(\tau)}{\mathrm{d}\tau}=\dot{f}(\tau_k)\approx\dot{P}(\tau_k)=\sum_{i=0}^{N_t}D_{ki}f(\tau_i)\]

With \(\mathbf{D}\) is a \((N_t+1)\times(N_t+1)\) differentiation matrix that depends on:



	values of \(\tau\)

	type of interpolating polynomial






Now we have an approximation of \(\dot{f}(\tau_k)\) that depends only on \(f(\tau)\)!




Approximating Integrals

The integral we are interested in evaluating is:


\[\int_{t_0}^{t_{N_t}}f(t)\mathrm{d}t=\frac{t_{N_t}-t_0}{2}\int_{-1}^{1}f(\tau_k)\mathrm{d}\tau\]

This can be approximated using quadrature:


\[\int_{-1}^{1}f(\tau_k)\mathrm{d}\tau\sum_{k=0}^{N_t}w_kf(\tau_k)\]

where \(w_k\) are quadrature weights and depend only on:



	values of \(\tau\)

	type of interpolating polynomial









Legendre Pseudospectral Method


	Polynomial



Define an N order Legendre polynomial as:



\[L_N(\tau) = \frac{1}{2^NN!}\frac{\mathrm{d}^n}{\mathrm{d}\tau^N}(\tau^2-1)^N\]





	Nodes




\[\begin{equation}
  \tau_k = \left \{
  \begin{aligned}
    &-1, && \text{if}\ k=0 \\
    &\text{kth}\;\text{root}\;of \dot{L}_{N_t}(\tau), && \text{if}\ k = {1, 2, 3, .. N_t-1}\\
    &+1\, && \text{if}\ k = N_t
  \end{aligned} \right.
\end{equation}\]

	Differentiation Matrix

	Interpolating Polynomial Function
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hp-psuedospectral method

To solve the integral constraints within the optimal control problem we employs the hp-pseudospectral method. The hp-psuedospectral method is an form of Gaussian Quadrature, which uses multi-interval collocation points.


Single Phase Optimal Control

Find:



	The state: \(\mathbf{x}(t)\)

	The control: \(\mathbf{u}(t)\)

	The integrals: \(\mathbf{q}\)

	The initial time: \(t_0\)

	The final time: \(t_f\)







	To Minimize:

	
\[J = \Phi(\mathbf{x}(t_0),\mathbf{x}(t_f),\mathbf{q},t_0,t_f)\]





That Satisfy the Following Constraints:



	Dynamic Constraints:





\[\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{\psi}(\mathbf{x}(t),\mathbf{u}(t),t)\]





	Inequality Path Constraints:




\[\begin{split}\mathbf{c}_{min} <= \mathbf{c}(\mathbf{x}(t),\mathbf{u}(t),t) <= \mathbf{c}_{max}\end{split}\]


	Integral Constraints:




\[q_i = \int_{t_0}^{t_f} \Upsilon_i(\mathbf{x}(t),\mathbf{u}(t),t)\, \mathrm{d}t,\;\;(i=1,....,n_q)\]


	Event Constraints:




\[\begin{split}\mathbf{b}_{min} <= \mathbf{b}(\mathbf{x}(t_0),\mathbf{x}(t_f),t_f,\mathbf{q}) <= \mathbf{b}_{max}\end{split}\]







Change of Interval

To can change the limits of the integration (in order to apply Quadrature), we introduce \(\tau \in [-1,+1]\) as a new independent variable and perform a change of variable for \(t\) in terms of \(\tau\), by defining:



\[t = \frac{t_f - t_0}{2}\tau + \frac{t_f + t_0}{2}\]




The optimal control problem defined above (TODO: figure out equation references), is now redefined in terms of \(\tau\) as:

Find:



	The state: \(\mathbf{x}(\tau)\)

	The control: \(\mathbf{u}(\tau)\)

	The integrals: \(\mathbf{q}\)

	The initial time: \(t_0\)

	The final time: \(t_f\)







	To Minimize:

	
\[J = \Phi(\mathbf{x}(-1),\mathbf{x}(+1),\mathbf{q},t_0,t_f)\]





That Satisfy the Following Constraints:



	Dynamic Constraints:





\[\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\tau} = \frac{t_f-t_0}{2} \mathbf{\psi}(\mathbf{x}(\tau),\mathbf{u}(\tau),\tau,t_0,t_f)\]





	Inequality Path Constraints:




\[\begin{split}\mathbf{c}_{min} <= \mathbf{c}(\mathbf{x}(\tau),\mathbf{u}(\tau),\tau,t_0,t_f) <= \mathbf{c}_{max}\end{split}\]


	Integral Constraints:




\[q_i = \frac{t_f-t_0}{2} \int_{-1}^{+1} \Upsilon_i(\mathbf{x}(\tau),\mathbf{u}(\tau),\tau,t_0,t_f)\, \mathrm{d}\tau,\;\;(i=1,....,n_q)\]


	Event Constraints:




\[\begin{split}\mathbf{b}_{min} <= \mathbf{b}(\mathbf{x}(-1),\mathbf{x}(+1),t_f,\mathbf{q}) <= \mathbf{b}_{max}\end{split}\]







Divide The Interval \(\tau \in [-1,+1]\)


	The interval \(\tau \in [-1,+1]\) is now divided into a mesh of K mesh intervals as:

	
\[[T_{k-1},T_k], k = 1,...,T_K\]



	with \((T_0,...,T_K)\) being the mesh points; which satisfy:

	
\[\begin{split}-1 = T_0 < T_1 < T_2 < T_3 < ........... < T_{K-1} < T_K = T_f = +1\end{split}\]








Rewrite the Optimal Control Problem using the Mesh

Find:



	The state : \(\mathbf{x}^{(k)}(\tau)\) in mesh interval k

	The control: \(\mathbf{u}^{(k)}(\tau)\) in mesh interval k

	The integrals: \(\mathbf{q}\)

	The initial time: \(t_0\)

	The final time: \(t_f\)







	To Minimize:

	
\[J = \Phi(\mathbf{x}^{(1)}(-1),\mathbf{x}^{(K)}(+1),\mathbf{q},t_0,t_f)\]





That Satisfy the Following Constraints:


	Dynamic Constraints:





\[\frac{\mathrm{d}\mathbf{x}^{(k)}(\tau^{(k)})}{\mathrm{d}\tau^{(k)}} = \frac{t_f-t_0}{2} \mathbf{\psi}(\mathbf{x}^{(k)}(\tau^{(k)}),\mathbf{u}^{(k)}(\tau^{(k)}),\tau^{(k)},t_0,t_f),\;\;(k=1,...,K)\]





	Inequality Path Constraints:




\[\begin{split}\mathbf{c}_{min} <= \mathbf{c}(\mathbf{x}^{(k)}(\tau^{(k)}),\mathbf{u}^{(k)}(\tau^{(k)}),\tau^{(k)},t_0,t_f) <= \mathbf{c}_{max},\;\;(k=1,...,K)\end{split}\]


	Integral Constraints:




\[q_i = \frac{t_f-t_0}{2} \displaystyle\sum_{k=1}^{K} \int_{T_{k-1}}^{T_k} \Upsilon_i(\mathbf{x}^{(k)}(\tau^{(k)}),\mathbf{u}^{(k)}(\tau^{(k)}),\tau,t_0,t_f)\, \mathrm{d}\tau,\;\;(i=1,....,n_q, k=1,...,K)\]


	Event Constraints:




\[\begin{split}\mathbf{b}_{min} <= \mathbf{b}(\mathbf{x}^{(1)}(-1),\mathbf{x}^{(K)}(+1),t_f,\mathbf{q}) <= \mathbf{b}_{max}\end{split}\]


	State Continuity



	Also, we must now constrain the state to be continuous at each interior mesh point \((T_1,...T_{k-1})\) by enforcing:


\[\mathbf{y}^{k}(T_k) = \mathbf{y}^{k+1}(T_k)\]















Optimal Control Problem Approximation

The optimal control problem will now be approximated using the Radau Collocation Method as which follows the description provided by [BGar11]. In collocation methods, the state and control are discretized at particular points within the selected time interval. Once this is done the problem can be transcribed into a nonlinear programming problem (NLP) and solved using standard solvers for these types of problems, such as IPOPT or KNITRO.


	For each mesh interval \(k\in[1,..,K]\):

	
\[\begin{eqnarray}
 \mathbf{x}^{(k)}(\tau)&\approx\mathbf{X}^{(k)}(\tau)=\displaystyle\sum_{j=1}^{N_k+1}\mathbf{X}_j^{(k)}\frac{\mathrm{d}\mathcal{L}_j^{k}(\tau)}{\mathrm{d}\tau}\\
  where,\;\;&\\
 \mathcal{L}_j^{k}(\tau)&=\prod_{\substack{l=1 \\ l\neq j}}^{N_k+1}\frac{\tau-\tau_l^{(k)}}{\tau_j^{(k)}-\tau_l^{(k)}}\\
                   and,\;\;&\\
                   &D_{ki}=\dot{\mathcal{L}}_i(\tau_k)=\frac{\mathrm{d}\mathcal{L}_j^{k}(\tau)}{\mathrm{d}\tau}
            \end{eqnarray}\]


	also,

	
	\(\mathcal{L}_j^{(k)}(\tau),\;\;(j=1,...,N_k+1)\) is a basis of Lagrange polynomials



	\((\tau_1^{k},.....,\tau_{N_k}^{(k)})\) are the Legendre-Gauss-Radau collocation points in mesh interval k



	defined on the subinterval \(\tau^{(k)}\in[T_{k-1},T_k]\)

	\(\tau_{N_k+1}^{(k)}=T_k\) is a noncollocated point














A basic description of Lagrange Polynomials is presented in Lagrange Interpolating Polynomials


	The \(\mathbf{D}\) matrix:

	
	
	Has a size  \(= [N_c]\times[N_c+1]\)

	
	with \((1<=k<=N_c), (1<=i<=N_c+1)\)



	
	this non-square shape because the state approximation uses the \(N_c+1\) points:

	\((\tau_1,...\tau_{N_c+1})\)







	
	but collocation is only done at the \(N_c\) LGR points:

	\((\tau_1,...\tau_{N_c})\)





















If we define the state matrix as:


\[\begin{equation}
  \mathbf{X}^{LGR}= \left [
  \begin{aligned}
    &\mathbf{X}_1\\
    &.\\
                            &.\\
                            &.\\
    &\mathbf{X}_{N_c+1}
  \end{aligned} ] \right.
\end{equation}\]
The dynamics are collocated at the \(N_c\) LGR points using:


\(\mathbf{D}_k\mathbf{X}^{LGR} = \frac{(t_f-t_0)}{2}\mathbf{f}(\mathbf{X}_k,\mathbf{U}_k,\tau,t_0,t_f)\;\;for\;\;k = {1,...,Nc}\)


	with,

	
	\(\mathbf{D}_k\) being the \(k^{th}\) row of the \(\mathbf{D}\) matrix.










References
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Code Development


Approximation of Optimal Control Problem
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Completed Functionality


Lagrange Basis Polynomials



	Functionality








Legendre Gaussian Method



	LGL Single Interval

	LGR Single Interval

	LGR Multiple Interval











          

      

      

    


    
         Copyright 2016, Huckleberry Febbo.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	NLOptControl 0.0.1-rc1 documentation 

          	Package Functionality 

          	Code Development 

          	Completed Functionality 
 
      

    


    
      
          
            
  
Functionality

The basic description of this functionality is detailed here Lagrange Interpolating Polynomials


lagrange_basis_poly()

The Lagrange basis polynomial equations where turned into a function.




interpolate_lagrange()

The interpolation functionality was pushed to a lower level. This allows the user to easily use code to interpolate a polynomial.

The development of these function can be:



	Viewed remotely on  using the jupyter nbviewer [http://nbviewer.jupyter.org/github/huckl3b3rry87/NLOptControl.jl/blob/master/examples/LIP/lagrange_basis_poly_dev.ipynb].

	Viewed locally and interacted using IJulia




To do this in julia type:

using IJulia
notebook(dir=Pkg.dir("NLOptControl/examples/LIP/lagrange_basis_poly_dev"))












Examples



	Simple Interpolation -> ex#1

	Scaled Lagrange Polynomials-> ex#2

	Runge’s Phenomena-> ex#3





These examples can be:



	Viewed remotely on  using the jupyter nbviewer [http://nbviewer.jupyter.org/github/huckl3b3rry87/NLOptControl.jl/blob/master/examples/LIP].

	Viewed locally and interacted using IJulia



To do this in julia type:

using IJulia
notebook(dir=Pkg.dir("NLOptControl/examples/LIP/"))
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LGL Single Interval


Basic Problem Definition

The code developed in this package uses the Legendre-Pseudospectral Method with Lagrange-Gauss-Lobatto (LGL) nodes. A basic description of this implementation presented in this documentation at Pseudospectral Methods and more much more detailed information can be found in both [ASTW11] and [AHer15].




Examples


	In these examples we use:

	
	Legendre-Gauss-Lobatto (LGL) nodes

	Single interval approximations

	Approximate integrals in the range of [-1,1]

	Approximate derivatives in the range of [-1,1]





	These examples can be:

	
	Viewed remotely on  using the jupyter nbviewer [http://nbviewer.jupyter.org/github/huckl3b3rry87/NLOptControl.jl/blob/master/examples/LGL_SI].



	Viewed locally and interacted using IJulia


To do this in julia type:

using IJulia
notebook(dir=Pkg.dir("NLOptControl/examples/LGL_SI/"))


















	Example 1

	Example 2
	Test 2a

	Test 2b

	Test 2c

	Conclusions





	Example 3
	Test 3a

	Test 3b

	Test 3c

	Test 3d

	Test 3e
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	[ASTW11]	Jie Shen, Tao Tang, and Li-Lian Wang. Spectral methods: algorithms, analysis and applications. volume 41. Springer Science & Business Media, 2011.
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Example 1

In the first example, we borrow a problem from Wikipedia [https://en.wikipedia.org/wiki/Gaussian_quadrature].


	where:

	
\[y(x) = 7x^3-8x^2-3x+3\]





[image: ../../_images/test1.png]

Difference between the Wikipedia Example and this Example

The difference between Wikipedia example and this one is that the Wikipedia example uses Gauss-Legendre Quadrature while the code developed in this package uses Legendre-Pseudospectral Method with Lagrange-Gauss-Lobatto (LGL) nodes. Information on the difference between these methods and many more can be found in both [BSTW11] and [BHer15].




	Conclusions
	We are able to exactly determine the integral
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Example 2

In the second example, we increase the order of the polynomial from 3 to 7. Then we increase N until we achieve accurate enough results.


	where:

	
\[y(x) = 7x^7-8x^6 - 3x^5 + 3x^4 + 7x^3-8x^2-3x+3\]






Test 2a

[image: ../../_images/test2a.png]



Test 2b

[image: ../../_images/test2b.png]



Test 2c

[image: ../../_images/test2c.png]



Conclusions



	We are able to determine the integral very accurately when we increase N to 4
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Example 3

In the third example, we approximate the derivative of a function by Approximating Derivatives.


Test 3a

In this test:


\[y(x) = 3x^2-3x+3\]

[image: ../../_images/test3a.png]

	We are able to determine the derivative exactly when they are linear functions is \(N = 3\)






Test 3b

In this test we increase the order of y(x) to:


\[y(x) = 3x^3 + 3x^2-3x+3\]

[image: ../../_images/test3b.png]

	When the derivative function becomes nonlinear
	We can no longer calculate it exactly everywhere

	There are only \(N_{t+1} = 4\) node points

	To calculate the derivative exactly we would need an \(∞\) amount of \(N_{t+1}\)





	We are still calculating the integral exactly and should be able to with \(N = 3\) until \(x^5\)






Test 3c

In this test we increase the order of y(x) to:


\[y(x) = 3x^4 + 3x^3 + 3x^2-3x+3\]

[image: ../../_images/test3c.png]

	We are still calculating the integral exactly and should be able to with \(N = 3\) until \(x^5\)






Test 3d

In this test we increase the order of y(x) to:


\[y(x) =3x^5 + 3x^4 + 3x^3 + 3x^2-3x+3\]

[image: ../../_images/test3d.png]

	We are still calculating the integral exactly with \(N = 3\)!!

	The percent error is = 0.000000000000000000 %






Test 3e

In this test we increase the order of y(x) to:


\[y(x) =3x^6 + 3x^5 + 3x^4 + 3x^3 + 3x^2-3x+3\]

[image: ../../_images/test3e.png]

	As expected, we are not still calculating the integral exactly with \(N = 3\)!!

	The percent error is = -1.818181818181822340 %
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LGR Single Interval


Basic Problem Definition

The code developed here uses the Legendre-Pseudospectral Method with Legendre-Gauss-Radau (LGR) nodes. This example demonstrates using the LGR points to calculate the integral and the derivative of a known polynomial function. It can be seen, that it behaves as expected. One, major difference between LGR and LGL is that the LGR method does NOT use both endpoints, in fact the LGR method omits the final end point. Researchers at the University of Florida describe this method in many papers including [A1][A2][A3][A4].




Examples


	In these examples we use:

	
	Legendre-Gauss-Lobatto (LGR) nodes

	Single interval approximations

	Approximate integrals in the range of [x0,xf]

	Approximate derivatives in the range of [x0,xf]





	These examples can be:

	
	Viewed remotely on  using the jupyter nbviewer [http://nbviewer.jupyter.org/github/huckl3b3rry87/NLOptControl.jl/blob/master/examples/LGR_SI].



	Viewed locally and interacted using IJulia


To do this in julia type:

using IJulia
notebook(dir=Pkg.dir("NLOptControl/examples/LGR_SI/"))


















	Example 1
	Test 1a

	Test 1b

	Test 1c

	Test 1d









References
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Example 1

In the first example, we demonstrate the functionality using LGR nodes using N=2.


	where:

	
\[y(x) = 3x^4+7x^3-8x^2-3x+3\]






Test 1a

[image: ../../_images/test1a1.png]

Notice for all cases, that the end points are NOT included.

This is one of the differences between the LGL and LGR methods.






Test 1b

[image: ../../_images/test1b1.png]

In Test 1b N=4

So we can calculate the integral of a 4th order polynomial exactly. Because 2*N-2 = 4.






Test 1c

[image: ../../_images/test1c1.png]



Test 1d

[image: ../../_images/test1d.png]

	Conclusions
	Working as expected.
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LGR Multiple Interval

Now, using Legendre-Gauss-Radau (LGR) points with multiple intervals to calculate the integral and the derivative of a known polynomial function. This example demonstrates using the Legendre-Gauss-Radau (LGR) points to calculate the integral and the derivative of a known polynomial function using a multiple interval approach.


Researchers at the University of Florida

describe this method in many papers including [CDar11][CGar11][CGPH+10][CGPH+09].




Functionality


asa()






Examples


	In these examples we use:

	
	Legendre-Gauss-Radau (LGR) nodes

	Multiple interval approximations

	Approximate integrals in the range of [x0,xf]

	Approximate derivatives in the range of [x0,xf]









	Neglecting Non-Collocated Point \(Y^{(k)}(τ)\) -> ex#1
	Test 1a

	Test 1b

	Test 1c





	Approximation of \(Y^{(k)}(τ)\) -> ex#2

	Approximation of State Derivative at of Mesh Grids -> ex#3
	Neglecting Derivative At End Of Mesh





	Higher Level Functionality -> ex#4






	These examples can be:

	
	Viewed remotely on  using the jupyter nbviewer [http://nbviewer.jupyter.org/github/huckl3b3rry87/NLOptControl.jl/blob/master/examples/LGR_MI].



	Viewed locally and interacted using IJulia


To do this in julia type:

using IJulia
notebook(dir=Pkg.dir("NLOptControl/examples/LGR_MI/"))
















References
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Neglecting Non-Collocated Point \(Y^{(k)}(τ)\) -> ex#1

In this first example, we demonstrate the functionality using LGR nodes


	where:

	
\[y(x) = -3x^5+3x^4+7x^3-8x^2-3x+3\]






Test 1a


	with:

	Nc = Int64(10); # number of collocation points in each interval
Ni = Int64(4);  # number of intervals









[image: ../../_images/test1a.png]



Test 1b


	with:

	Nc = Int64(3); # number of collocation points in each interval
Ni = Int64(2);  # number of intervals









[image: ../../_images/test1b.png]



Test 1c


	with:

	Nc = Int64(4); # number of collocation points in each interval
Ni = Int64(2);  # number of intervals









[image: ../../_images/test1c.png]

	Conclusions


	It seems, that using the multiple interval formulation sacrifices the property where



	We can calculate a Pth order polynomial exactly with \(2*N-2\) collocation points

	We do not approximate a 5th order polynomial with 6 total collocation points

	Looking at Test 1c, we can see that when we use N=4 we calculate the intergral exactly
	So the property applies only to each interval












	Test 1b and Test 1c both show that we are not calculating the end point
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Approximation of \(Y^{(k)}(τ)\) -> ex#2

In the previous example, we neglected the approximation of the final state in each interval \(Y^(k)(τ)\).

In this example, we will demonstrate calculation of this state.


	where:

	
\[y(x) = 3x^2-3x+3\]



	with:

	Nc = Int64(3); # number of collocation points in each interval
Ni = Int64(2);  # number of intervals









[image: ../../_images/test2a1.png]

Why Do We Need This State?

It is needed to make the constraint that the states at the end of each mesh grid are equal.
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Approximation of State Derivative at of Mesh Grids -> ex#3

In this example, the state derivative at the end of each mesh.


	where:

	
\[y(x) = -0.3x^2+3x-0.3\]



	with:

	Nc = Int64(3); # number of collocation points in each interval
Ni = Int64(2);  # number of intervals









[image: ../../_images/test3a1.png]

Why Do We Need This Derivative At the End Point?

Actually, we do not need this. There is no constraint on state dynamics at the end of each mesh grid using the method discussed in [DGar11].  This is an important point, that is described here hp-psuedospectral method.



Now, we will look at the \(\mathbf{D}\) matrix used to calculate the derivatives above:

D =
4×4×2 Array{Float64,3}:
[:, :, 1] =
 -1.0         1.50639   -1.10639    0.6
 -0.210639   -0.155051   0.713568  -0.347878
  0.0506395  -0.233568  -0.644949   0.827878
 -0.0666667   0.276429  -2.00976    1.8

[:, :, 2] =
 -1.0         1.50639   -1.10639    0.6
 -0.210639   -0.155051   0.713568  -0.347878
  0.0506395  -0.233568  -0.644949   0.827878
 -0.0666667   0.276429  -2.00976    1.8





Notice that for each interval the \(\mathbf{D}\) matrix is actually identical. This is quite an interesting observation indeed, because different inputs where used to calculate it, these are the nodes.

For the first interval:

0.0
1.77526
4.22474
5.0





For the second interval:

5.0
6.77526
9.22474
10.0





These nodes depend on the interval \(t_0->t_f\) as well as the \(\tau\):

-1.0
-0.289898
 0.689898





Which are the LGR nodes when \(N_c=3\)

So, it seems that maybe we can calculate the weights beforehand as well as the \(\mathbf{D}\) matrix and cache the result.


Neglecting Derivative At End Of Mesh

For the purposes of using this method for control, again we do not need to calculate the derivative of the state at the ends of each mesh. So, we can remove the bottom row of the \(\mathbf{D}\) matrix as:

D =
[:, :, 1] =
 -1.0         1.50639   -1.10639    0.6
 -0.210639   -0.155051   0.713568  -0.347878
  0.0506395  -0.233568  -0.644949   0.827878

[:, :, 2] =
 -1.0         1.50639   -1.10639    0.6
 -0.210639   -0.155051   0.713568  -0.347878
  0.0506395  -0.233568  -0.644949   0.827878





[image: ../../_images/test3b1.png]
So, at the end of each mesh grid, we still approximate the state, but neglect it’s derivative.

References
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Higher Level Functionality -> ex#4

In this example, we are working on preparing the code for use with optimization by creating higher level functionality. Examine the IJulia notebook to see differences in code.


	where:

	
\[y(x) = -0.3x^2+3x-0.3\]



	with:

	Nc = Int64(3); # number of collocation points in each interval
Ni = Int64(2);  # number of intervals









[image: ../../_images/test4a.png]




          

      

      

    


    
         Copyright 2016, Huckleberry Febbo.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	NLOptControl 0.0.1-rc1 documentation 

          	Package Functionality 

          	Code Development 
 
      

    


    
      
          
            
  
Developing Code

This site documents current progress and functionality that is being developed.


Current Focus




Old Records

This is for documentation that was created where something was still being worked on where:



	Everything was not working as expected, but has now been fixed or is obsolete.

	Removed Functionality
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Scaled Lagrange Polynomials-> ex#2



		where:


		
\[y(x) = x^3\]







and the interval from x=1 to x=3



		with:


		N = 2; # number of collocation points













Test 2a


[image: ../../_images/test2a2.png]

		Conclusions
		Each scaled Lagrange polynomial passes through a control point


		The final interpolating polynomial passes through each control point and is exact
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Runge’s Phenomena-> ex#3


This example investigates Runge’s phenomena [https://en.wikipedia.org/wiki/Runge%27s_phenomenon].



		where:


		
\[y(x) = \frac{1}{1+25x^2}\]







and the interval from x0=-1 to xf=1



		with:


		N = order of Lagrange Polynomial
x_data = linspace(x0,xf,N+1);












[image: ../../_images/test3a2.png]

		Conclusions
		Be careful not to use too high of an N












To Mitigate Runge’s Phenomenon



		Could sample more near the end points


		Could use Chebyshev nodes [https://en.wikipedia.org/wiki/Chebyshev_nodes]
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Simple Interpolation -> ex#1


In this first example, we demonstrate the functionality using the interpolating functionality.



		where:


		
\[y(x) = x^2\]







and the interval from x=1 to x=3



		with:


		N = 2; # number of collocation points













Test 1a


[image: ../../_images/test1a2.png]

		Conclusions
		Working as expected.
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