

 Navigation

 	
 index

 	
 next |

 	NLOptControl 0.0.1-rc1 documentation

NLOptControl.jl

Table of Contents

	Background Information
	Lagrange Interpolating Polynomials

	Direct Transcription of Optimal Control Problems

	Time Marching Methods

	Pseudospectral Methods

	hp-psuedospectral method

	Package Functionality
	Code Development

	Bibliography

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

Background Information

While detailed information on these approaches to discretizing infinite dimensional (or continuous) optimal control problems can be found (and comes from) this Ph.D. dissertation [http://etd.fcla.edu/UF/UFE0042778/darby_c.pdf], this related journal publication [http://vdol.mae.ufl.edu/JournalPublications/TOMS-GPOPS-II-August-2013.pdf] and this technical report [http://systemdesign.illinois.edu/publications/Her15a.pdf], the Background Information section will cover some basics.

	Lagrange Interpolating Polynomials
	Definition

	Lagrange Basis Polynomials

	Direct Transcription of Optimal Control Problems

	Time Marching Methods
	Euler Method

	Trapezoidal Method

	Pseudospectral Methods
	Change of Interval

	Polynomial Interpolation

	Approximating Derivatives

	Approximating Integrals

	Legendre Pseudospectral Method

	hp-psuedospectral method
	Single Phase Optimal Control

	Change of Interval

	Divide The Interval \(\tau \in [-1,+1]\)

	Rewrite the Optimal Control Problem using the Mesh

	Optimal Control Problem Approximation

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

 	Background Information

Lagrange Interpolating Polynomials

Definition

	given \((N+1)\) unique data points
	\((x_0,y_0),(x_1,y_1),....,(x_N,y_N)\)

	we can create an \(N^{th}\) order Lagrange interpolating polynomial

\[P_n(x) = \sum_{i=0}^N \mathcal{L}_i(x)f(x_i)\]

	where,

	
\[\begin{eqnarray}
 f(x_0) = y_0\\
 f(x_1) = y_1\\
 .\\
 .\\
 f(x_i) = y_i\\
 .\\
 f(x_N) = y_N
 \end{eqnarray}\]

So, we are just multiplying by the given \(y_i\) values.

Lagrange Basis Polynomials

More information on Lagrange Basis Polynomials is here [https://en.wikipedia.org/wiki/Vandermonde_matrix]

\[\begin{split}\mathcal{L}_i(x)=\prod_{\substack{j=0 \\ j\neq i}}^{N}\frac{x-x_j}{x_i-x_j}\end{split}\]

	so expanding this,

	
\[\begin{eqnarray}
\mathcal{L}_i(x) &=\frac{x-x_0}{x_i-x_0}\frac{x-x_1}{x_i-x_1}...\\
 &...\frac{x-x_{i-1}}{x_i-x_{i-1}}...\\
 &...\frac{x-x_{i+1}}{x_i-x_{i+1}}...\\
 &...\frac{x-x_N}{x_i-x_N}
\end{eqnarray}\]

Notice that we do not include the term where \(i==j\)!

Please see Functionality for details on implementation.

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

 	Background Information

Direct Transcription of Optimal Control Problems

Let \(N_t+1\) be the total number of discrete time points.

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

 	Background Information

Time Marching Methods

Euler Method

Trapezoidal Method

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

 	Background Information

Pseudospectral Methods

Change of Interval

To can change the limits of the integration (in order to apply Quadrature), we introduce \(\tau \in [-1,+1]\) as a new independent variable and perform a change of variable for \(t\) in terms of \(\tau\), by defining:

\[\tau = \frac{2}{t_{{N}_{t}}-t_0}t - \frac{t_{N_t}+t_0}{t_{N_t}-t_0}\]

Polynomial Interpolation

Select a set of \(N_t+1\) node points:

\[\mathbf{\tau} = [\tau_0,\tau_1,\tau_2,.....,\tau_{N_t}]\]

	These none points are just numbers
	Increasing and distinct numbers \(\in [-1,+1]\)

A unique polynomial \(P(\tau)\) exists (i.e. \(\exists! P(\tau)\)) of a maximum degree of \(N_t\) where:

\[f(\tau_k)=P(\tau_k),\;\;\;k={0,1,2,....N_t}\]

	So, the function evaluated at \(\tau_k\) is equivalent the this polynomial evaluated at that point.

But, between the intervals, we must approximate \(f(\tau)\) as:

\[f(\tau) \approx P(\tau)= \sum_{k=0}^{N_t}f(\tau_k)\phi_k(\tau)\]

with \(\phi_k(•)\) are basis polynomials that are built by interpolating \(f(\tau)\) at the node points.

Approximating Derivatives

We can also approximate the derivative of a function \(f(\tau)\) as:

\[\frac{\mathrm{d}f(\tau)}{\mathrm{d}\tau}=\dot{f}(\tau_k)\approx\dot{P}(\tau_k)=\sum_{i=0}^{N_t}D_{ki}f(\tau_i)\]

With \(\mathbf{D}\) is a \((N_t+1)\times(N_t+1)\) differentiation matrix that depends on:

	values of \(\tau\)

	type of interpolating polynomial

Now we have an approximation of \(\dot{f}(\tau_k)\) that depends only on \(f(\tau)\)!

Approximating Integrals

The integral we are interested in evaluating is:

\[\int_{t_0}^{t_{N_t}}f(t)\mathrm{d}t=\frac{t_{N_t}-t_0}{2}\int_{-1}^{1}f(\tau_k)\mathrm{d}\tau\]

This can be approximated using quadrature:

\[\int_{-1}^{1}f(\tau_k)\mathrm{d}\tau\sum_{k=0}^{N_t}w_kf(\tau_k)\]

where \(w_k\) are quadrature weights and depend only on:

	values of \(\tau\)

	type of interpolating polynomial

Legendre Pseudospectral Method

	Polynomial

Define an N order Legendre polynomial as:

\[L_N(\tau) = \frac{1}{2^NN!}\frac{\mathrm{d}^n}{\mathrm{d}\tau^N}(\tau^2-1)^N\]

	Nodes

\[\begin{equation}
 \tau_k = \left \{
 \begin{aligned}
 &-1, && \text{if}\ k=0 \\
 &\text{kth}\;\text{root}\;of \dot{L}_{N_t}(\tau), && \text{if}\ k = {1, 2, 3, .. N_t-1}\\
 &+1\, && \text{if}\ k = N_t
 \end{aligned} \right.
\end{equation}\]

	Differentiation Matrix

	Interpolating Polynomial Function

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

 	Background Information

hp-psuedospectral method

To solve the integral constraints within the optimal control problem we employs the hp-pseudospectral method. The hp-psuedospectral method is an form of Gaussian Quadrature, which uses multi-interval collocation points.

Single Phase Optimal Control

Find:

	The state: \(\mathbf{x}(t)\)

	The control: \(\mathbf{u}(t)\)

	The integrals: \(\mathbf{q}\)

	The initial time: \(t_0\)

	The final time: \(t_f\)

	To Minimize:

	
\[J = \Phi(\mathbf{x}(t_0),\mathbf{x}(t_f),\mathbf{q},t_0,t_f)\]

That Satisfy the Following Constraints:

	Dynamic Constraints:

\[\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{\psi}(\mathbf{x}(t),\mathbf{u}(t),t)\]

	Inequality Path Constraints:

\[\begin{split}\mathbf{c}_{min} <= \mathbf{c}(\mathbf{x}(t),\mathbf{u}(t),t) <= \mathbf{c}_{max}\end{split}\]

	Integral Constraints:

\[q_i = \int_{t_0}^{t_f} \Upsilon_i(\mathbf{x}(t),\mathbf{u}(t),t)\, \mathrm{d}t,\;\;(i=1,....,n_q)\]

	Event Constraints:

\[\begin{split}\mathbf{b}_{min} <= \mathbf{b}(\mathbf{x}(t_0),\mathbf{x}(t_f),t_f,\mathbf{q}) <= \mathbf{b}_{max}\end{split}\]

Change of Interval

To can change the limits of the integration (in order to apply Quadrature), we introduce \(\tau \in [-1,+1]\) as a new independent variable and perform a change of variable for \(t\) in terms of \(\tau\), by defining:

\[t = \frac{t_f - t_0}{2}\tau + \frac{t_f + t_0}{2}\]

The optimal control problem defined above (TODO: figure out equation references), is now redefined in terms of \(\tau\) as:

Find:

	The state: \(\mathbf{x}(\tau)\)

	The control: \(\mathbf{u}(\tau)\)

	The integrals: \(\mathbf{q}\)

	The initial time: \(t_0\)

	The final time: \(t_f\)

	To Minimize:

	
\[J = \Phi(\mathbf{x}(-1),\mathbf{x}(+1),\mathbf{q},t_0,t_f)\]

That Satisfy the Following Constraints:

	Dynamic Constraints:

\[\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\tau} = \frac{t_f-t_0}{2} \mathbf{\psi}(\mathbf{x}(\tau),\mathbf{u}(\tau),\tau,t_0,t_f)\]

	Inequality Path Constraints:

\[\begin{split}\mathbf{c}_{min} <= \mathbf{c}(\mathbf{x}(\tau),\mathbf{u}(\tau),\tau,t_0,t_f) <= \mathbf{c}_{max}\end{split}\]

	Integral Constraints:

\[q_i = \frac{t_f-t_0}{2} \int_{-1}^{+1} \Upsilon_i(\mathbf{x}(\tau),\mathbf{u}(\tau),\tau,t_0,t_f)\, \mathrm{d}\tau,\;\;(i=1,....,n_q)\]

	Event Constraints:

\[\begin{split}\mathbf{b}_{min} <= \mathbf{b}(\mathbf{x}(-1),\mathbf{x}(+1),t_f,\mathbf{q}) <= \mathbf{b}_{max}\end{split}\]

Divide The Interval \(\tau \in [-1,+1]\)

	The interval \(\tau \in [-1,+1]\) is now divided into a mesh of K mesh intervals as:

	
\[[T_{k-1},T_k], k = 1,...,T_K\]

	with \((T_0,...,T_K)\) being the mesh points; which satisfy:

	
\[\begin{split}-1 = T_0 < T_1 < T_2 < T_3 < < T_{K-1} < T_K = T_f = +1\end{split}\]

Rewrite the Optimal Control Problem using the Mesh

Find:

	The state : \(\mathbf{x}^{(k)}(\tau)\) in mesh interval k

	The control: \(\mathbf{u}^{(k)}(\tau)\) in mesh interval k

	The integrals: \(\mathbf{q}\)

	The initial time: \(t_0\)

	The final time: \(t_f\)

	To Minimize:

	
\[J = \Phi(\mathbf{x}^{(1)}(-1),\mathbf{x}^{(K)}(+1),\mathbf{q},t_0,t_f)\]

That Satisfy the Following Constraints:

	Dynamic Constraints:

\[\frac{\mathrm{d}\mathbf{x}^{(k)}(\tau^{(k)})}{\mathrm{d}\tau^{(k)}} = \frac{t_f-t_0}{2} \mathbf{\psi}(\mathbf{x}^{(k)}(\tau^{(k)}),\mathbf{u}^{(k)}(\tau^{(k)}),\tau^{(k)},t_0,t_f),\;\;(k=1,...,K)\]

	Inequality Path Constraints:

\[\begin{split}\mathbf{c}_{min} <= \mathbf{c}(\mathbf{x}^{(k)}(\tau^{(k)}),\mathbf{u}^{(k)}(\tau^{(k)}),\tau^{(k)},t_0,t_f) <= \mathbf{c}_{max},\;\;(k=1,...,K)\end{split}\]

	Integral Constraints:

\[q_i = \frac{t_f-t_0}{2} \displaystyle\sum_{k=1}^{K} \int_{T_{k-1}}^{T_k} \Upsilon_i(\mathbf{x}^{(k)}(\tau^{(k)}),\mathbf{u}^{(k)}(\tau^{(k)}),\tau,t_0,t_f)\, \mathrm{d}\tau,\;\;(i=1,....,n_q, k=1,...,K)\]

	Event Constraints:

\[\begin{split}\mathbf{b}_{min} <= \mathbf{b}(\mathbf{x}^{(1)}(-1),\mathbf{x}^{(K)}(+1),t_f,\mathbf{q}) <= \mathbf{b}_{max}\end{split}\]

	State Continuity

	Also, we must now constrain the state to be continuous at each interior mesh point \((T_1,...T_{k-1})\) by enforcing:

\[\mathbf{y}^{k}(T_k) = \mathbf{y}^{k+1}(T_k)\]

Optimal Control Problem Approximation

The optimal control problem will now be approximated using the Radau Collocation Method as which follows the description provided by [BGar11]. In collocation methods, the state and control are discretized at particular points within the selected time interval. Once this is done the problem can be transcribed into a nonlinear programming problem (NLP) and solved using standard solvers for these types of problems, such as IPOPT or KNITRO.

	For each mesh interval \(k\in[1,..,K]\):

	
\[\begin{eqnarray}
 \mathbf{x}^{(k)}(\tau)&\approx\mathbf{X}^{(k)}(\tau)=\displaystyle\sum_{j=1}^{N_k+1}\mathbf{X}_j^{(k)}\frac{\mathrm{d}\mathcal{L}_j^{k}(\tau)}{\mathrm{d}\tau}\\
 where,\;\;&\\
 \mathcal{L}_j^{k}(\tau)&=\prod_{\substack{l=1 \\ l\neq j}}^{N_k+1}\frac{\tau-\tau_l^{(k)}}{\tau_j^{(k)}-\tau_l^{(k)}}\\
 and,\;\;&\\
 &D_{ki}=\dot{\mathcal{L}}_i(\tau_k)=\frac{\mathrm{d}\mathcal{L}_j^{k}(\tau)}{\mathrm{d}\tau}
 \end{eqnarray}\]

	also,

	
	\(\mathcal{L}_j^{(k)}(\tau),\;\;(j=1,...,N_k+1)\) is a basis of Lagrange polynomials

	\((\tau_1^{k},.....,\tau_{N_k}^{(k)})\) are the Legendre-Gauss-Radau collocation points in mesh interval k

	defined on the subinterval \(\tau^{(k)}\in[T_{k-1},T_k]\)

	\(\tau_{N_k+1}^{(k)}=T_k\) is a noncollocated point

A basic description of Lagrange Polynomials is presented in Lagrange Interpolating Polynomials

	The \(\mathbf{D}\) matrix:

	
	
	Has a size \(= [N_c]\times[N_c+1]\)

	
	with \((1<=k<=N_c), (1<=i<=N_c+1)\)

	
	this non-square shape because the state approximation uses the \(N_c+1\) points:

	\((\tau_1,...\tau_{N_c+1})\)

	
	but collocation is only done at the \(N_c\) LGR points:

	\((\tau_1,...\tau_{N_c})\)

If we define the state matrix as:

\[\begin{equation}
 \mathbf{X}^{LGR}= \left [
 \begin{aligned}
 &\mathbf{X}_1\\
 &.\\
 &.\\
 &.\\
 &\mathbf{X}_{N_c+1}
 \end{aligned}] \right.
\end{equation}\]
The dynamics are collocated at the \(N_c\) LGR points using:

\(\mathbf{D}_k\mathbf{X}^{LGR} = \frac{(t_f-t_0)}{2}\mathbf{f}(\mathbf{X}_k,\mathbf{U}_k,\tau,t_0,t_f)\;\;for\;\;k = {1,...,Nc}\)

	with,

	
	\(\mathbf{D}_k\) being the \(k^{th}\) row of the \(\mathbf{D}\) matrix.

References

	[BGar11]	Divya Garg. Advances in global pseudospectral methods for optimal control. PhD thesis, University of Florida, 2011.

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

Package Functionality

	Code Development
	Approximation of Optimal Control Problem

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

 	Package Functionality

Code Development

Approximation of Optimal Control Problem

	Completed Functionality
	Lagrange Basis Polynomials

	Legendre Gaussian Method

	Developing Code
	Current Focus

	Old Records

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

 	Package Functionality

 	Code Development

Completed Functionality

Lagrange Basis Polynomials

	Functionality

Legendre Gaussian Method

	LGL Single Interval

	LGR Single Interval

	LGR Multiple Interval

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

 	Package Functionality

 	Code Development

 	Completed Functionality

Functionality

The basic description of this functionality is detailed here Lagrange Interpolating Polynomials

lagrange_basis_poly()

The Lagrange basis polynomial equations where turned into a function.

interpolate_lagrange()

The interpolation functionality was pushed to a lower level. This allows the user to easily use code to interpolate a polynomial.

The development of these function can be:

	Viewed remotely on using the jupyter nbviewer [http://nbviewer.jupyter.org/github/huckl3b3rry87/NLOptControl.jl/blob/master/examples/LIP/lagrange_basis_poly_dev.ipynb].

	Viewed locally and interacted using IJulia

To do this in julia type:

using IJulia
notebook(dir=Pkg.dir("NLOptControl/examples/LIP/lagrange_basis_poly_dev"))

Examples

	Simple Interpolation -> ex#1

	Scaled Lagrange Polynomials-> ex#2

	Runge’s Phenomena-> ex#3

These examples can be:

	Viewed remotely on using the jupyter nbviewer [http://nbviewer.jupyter.org/github/huckl3b3rry87/NLOptControl.jl/blob/master/examples/LIP].

	Viewed locally and interacted using IJulia

To do this in julia type:

using IJulia
notebook(dir=Pkg.dir("NLOptControl/examples/LIP/"))

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

 	Package Functionality

 	Code Development

 	Completed Functionality

LGL Single Interval

Basic Problem Definition

The code developed in this package uses the Legendre-Pseudospectral Method with Lagrange-Gauss-Lobatto (LGL) nodes. A basic description of this implementation presented in this documentation at Pseudospectral Methods and more much more detailed information can be found in both [ASTW11] and [AHer15].

Examples

	In these examples we use:

	
	Legendre-Gauss-Lobatto (LGL) nodes

	Single interval approximations

	Approximate integrals in the range of [-1,1]

	Approximate derivatives in the range of [-1,1]

	These examples can be:

	
	Viewed remotely on using the jupyter nbviewer [http://nbviewer.jupyter.org/github/huckl3b3rry87/NLOptControl.jl/blob/master/examples/LGL_SI].

	Viewed locally and interacted using IJulia

To do this in julia type:

using IJulia
notebook(dir=Pkg.dir("NLOptControl/examples/LGL_SI/"))

	Example 1

	Example 2
	Test 2a

	Test 2b

	Test 2c

	Conclusions

	Example 3
	Test 3a

	Test 3b

	Test 3c

	Test 3d

	Test 3e

References

	[AHer15]	DanielRonald Herber. Basic implementation of multiple-interval pseudospectral methods to solve optimal control problems. UIUC-ESDL-2015-01, 2015.

	[ASTW11]	Jie Shen, Tao Tang, and Li-Lian Wang. Spectral methods: algorithms, analysis and applications. volume 41. Springer Science & Business Media, 2011.

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

 	Package Functionality

 	Code Development

 	Completed Functionality

 	LGL Single Interval

Example 1

In the first example, we borrow a problem from Wikipedia [https://en.wikipedia.org/wiki/Gaussian_quadrature].

	where:

	
\[y(x) = 7x^3-8x^2-3x+3\]

[image: ../../_images/test1.png]

Difference between the Wikipedia Example and this Example

The difference between Wikipedia example and this one is that the Wikipedia example uses Gauss-Legendre Quadrature while the code developed in this package uses Legendre-Pseudospectral Method with Lagrange-Gauss-Lobatto (LGL) nodes. Information on the difference between these methods and many more can be found in both [BSTW11] and [BHer15].

	Conclusions
	We are able to exactly determine the integral

References

	[BHer15]	DanielRonald Herber. Basic implementation of multiple-interval pseudospectral methods to solve optimal control problems. UIUC-ESDL-2015-01, 2015.

	[BSTW11]	Jie Shen, Tao Tang, and Li-Lian Wang. Spectral methods: algorithms, analysis and applications. volume 41. Springer Science & Business Media, 2011.

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

 	Package Functionality

 	Code Development

 	Completed Functionality

 	LGL Single Interval

Example 2

In the second example, we increase the order of the polynomial from 3 to 7. Then we increase N until we achieve accurate enough results.

	where:

	
\[y(x) = 7x^7-8x^6 - 3x^5 + 3x^4 + 7x^3-8x^2-3x+3\]

Test 2a

[image: ../../_images/test2a.png]

Test 2b

[image: ../../_images/test2b.png]

Test 2c

[image: ../../_images/test2c.png]

Conclusions

	We are able to determine the integral very accurately when we increase N to 4

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

 	Package Functionality

 	Code Development

 	Completed Functionality

 	LGL Single Interval

Example 3

In the third example, we approximate the derivative of a function by Approximating Derivatives.

Test 3a

In this test:

\[y(x) = 3x^2-3x+3\]

[image: ../../_images/test3a.png]

	We are able to determine the derivative exactly when they are linear functions is \(N = 3\)

Test 3b

In this test we increase the order of y(x) to:

\[y(x) = 3x^3 + 3x^2-3x+3\]

[image: ../../_images/test3b.png]

	When the derivative function becomes nonlinear
	We can no longer calculate it exactly everywhere

	There are only \(N_{t+1} = 4\) node points

	To calculate the derivative exactly we would need an \(∞\) amount of \(N_{t+1}\)

	We are still calculating the integral exactly and should be able to with \(N = 3\) until \(x^5\)

Test 3c

In this test we increase the order of y(x) to:

\[y(x) = 3x^4 + 3x^3 + 3x^2-3x+3\]

[image: ../../_images/test3c.png]

	We are still calculating the integral exactly and should be able to with \(N = 3\) until \(x^5\)

Test 3d

In this test we increase the order of y(x) to:

\[y(x) =3x^5 + 3x^4 + 3x^3 + 3x^2-3x+3\]

[image: ../../_images/test3d.png]

	We are still calculating the integral exactly with \(N = 3\)!!

	The percent error is = 0.000000000000000000 %

Test 3e

In this test we increase the order of y(x) to:

\[y(x) =3x^6 + 3x^5 + 3x^4 + 3x^3 + 3x^2-3x+3\]

[image: ../../_images/test3e.png]

	As expected, we are not still calculating the integral exactly with \(N = 3\)!!

	The percent error is = -1.818181818181822340 %

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

 	Package Functionality

 	Code Development

 	Completed Functionality

LGR Single Interval

Basic Problem Definition

The code developed here uses the Legendre-Pseudospectral Method with Legendre-Gauss-Radau (LGR) nodes. This example demonstrates using the LGR points to calculate the integral and the derivative of a known polynomial function. It can be seen, that it behaves as expected. One, major difference between LGR and LGL is that the LGR method does NOT use both endpoints, in fact the LGR method omits the final end point. Researchers at the University of Florida describe this method in many papers including [A1][A2][A3][A4].

Examples

	In these examples we use:

	
	Legendre-Gauss-Lobatto (LGR) nodes

	Single interval approximations

	Approximate integrals in the range of [x0,xf]

	Approximate derivatives in the range of [x0,xf]

	These examples can be:

	
	Viewed remotely on using the jupyter nbviewer [http://nbviewer.jupyter.org/github/huckl3b3rry87/NLOptControl.jl/blob/master/examples/LGR_SI].

	Viewed locally and interacted using IJulia

To do this in julia type:

using IJulia
notebook(dir=Pkg.dir("NLOptControl/examples/LGR_SI/"))

	Example 1
	Test 1a

	Test 1b

	Test 1c

	Test 1d

References

	[A1]	ChristopherL Darby. hp–Pseudospectral Method for Solving Continuous-Time Nonlinear Optimal Control Problems. PhD thesis, University of Florida, 2011.

	[A2]	Divya Garg. Advances in global pseudospectral methods for optimal control. PhD thesis, University of Florida, 2011.

	[A3]	Divya Garg, Michael Patterson, WilliamW Hager, AnilV Rao, DavidA Benson, and GeoffreyT Huntington. A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica, 46(11):1843–1851, 2010.

	[A4]	Divya Garg, MichaelA Patterson, WilliamW Hager, AnilV Rao, DavidA Benson, and GeoffreyT Huntington. An overview of three pseudospectral methods for the numerical solution of optimal control problems. Advances in the Astronautical Sciences, 135(1):475–487, 2009.

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

 	Package Functionality

 	Code Development

 	Completed Functionality

 	LGR Single Interval

Example 1

In the first example, we demonstrate the functionality using LGR nodes using N=2.

	where:

	
\[y(x) = 3x^4+7x^3-8x^2-3x+3\]

Test 1a

[image: ../../_images/test1a1.png]

Notice for all cases, that the end points are NOT included.

This is one of the differences between the LGL and LGR methods.

Test 1b

[image: ../../_images/test1b1.png]

In Test 1b N=4

So we can calculate the integral of a 4th order polynomial exactly. Because 2*N-2 = 4.

Test 1c

[image: ../../_images/test1c1.png]

Test 1d

[image: ../../_images/test1d.png]

	Conclusions
	Working as expected.

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

 	Package Functionality

 	Code Development

 	Completed Functionality

LGR Multiple Interval

Now, using Legendre-Gauss-Radau (LGR) points with multiple intervals to calculate the integral and the derivative of a known polynomial function. This example demonstrates using the Legendre-Gauss-Radau (LGR) points to calculate the integral and the derivative of a known polynomial function using a multiple interval approach.

Researchers at the University of Florida

describe this method in many papers including [CDar11][CGar11][CGPH+10][CGPH+09].

Functionality

asa()

Examples

	In these examples we use:

	
	Legendre-Gauss-Radau (LGR) nodes

	Multiple interval approximations

	Approximate integrals in the range of [x0,xf]

	Approximate derivatives in the range of [x0,xf]

	Neglecting Non-Collocated Point \(Y^{(k)}(τ)\) -> ex#1
	Test 1a

	Test 1b

	Test 1c

	Approximation of \(Y^{(k)}(τ)\) -> ex#2

	Approximation of State Derivative at of Mesh Grids -> ex#3
	Neglecting Derivative At End Of Mesh

	Higher Level Functionality -> ex#4

	These examples can be:

	
	Viewed remotely on using the jupyter nbviewer [http://nbviewer.jupyter.org/github/huckl3b3rry87/NLOptControl.jl/blob/master/examples/LGR_MI].

	Viewed locally and interacted using IJulia

To do this in julia type:

using IJulia
notebook(dir=Pkg.dir("NLOptControl/examples/LGR_MI/"))

References

	[CDar11]	ChristopherL Darby. hp–Pseudospectral Method for Solving Continuous-Time Nonlinear Optimal Control Problems. PhD thesis, University of Florida, 2011.

	[CGar11]	Divya Garg. Advances in global pseudospectral methods for optimal control. PhD thesis, University of Florida, 2011.

	[CGPH+10]	Divya Garg, Michael Patterson, WilliamW Hager, AnilV Rao, DavidA Benson, and GeoffreyT Huntington. A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica, 46(11):1843–1851, 2010.

	[CGPH+09]	Divya Garg, MichaelA Patterson, WilliamW Hager, AnilV Rao, DavidA Benson, and GeoffreyT Huntington. An overview of three pseudospectral methods for the numerical solution of optimal control problems. Advances in the Astronautical Sciences, 135(1):475–487, 2009.

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

 	Package Functionality

 	Code Development

 	Completed Functionality

 	LGR Multiple Interval

Neglecting Non-Collocated Point \(Y^{(k)}(τ)\) -> ex#1

In this first example, we demonstrate the functionality using LGR nodes

	where:

	
\[y(x) = -3x^5+3x^4+7x^3-8x^2-3x+3\]

Test 1a

	with:

	Nc = Int64(10); # number of collocation points in each interval
Ni = Int64(4); # number of intervals

[image: ../../_images/test1a.png]

Test 1b

	with:

	Nc = Int64(3); # number of collocation points in each interval
Ni = Int64(2); # number of intervals

[image: ../../_images/test1b.png]

Test 1c

	with:

	Nc = Int64(4); # number of collocation points in each interval
Ni = Int64(2); # number of intervals

[image: ../../_images/test1c.png]

	Conclusions

	It seems, that using the multiple interval formulation sacrifices the property where

	We can calculate a Pth order polynomial exactly with \(2*N-2\) collocation points

	We do not approximate a 5th order polynomial with 6 total collocation points

	Looking at Test 1c, we can see that when we use N=4 we calculate the intergral exactly
	So the property applies only to each interval

	Test 1b and Test 1c both show that we are not calculating the end point

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

 	Package Functionality

 	Code Development

 	Completed Functionality

 	LGR Multiple Interval

Approximation of \(Y^{(k)}(τ)\) -> ex#2

In the previous example, we neglected the approximation of the final state in each interval \(Y^(k)(τ)\).

In this example, we will demonstrate calculation of this state.

	where:

	
\[y(x) = 3x^2-3x+3\]

	with:

	Nc = Int64(3); # number of collocation points in each interval
Ni = Int64(2); # number of intervals

[image: ../../_images/test2a1.png]

Why Do We Need This State?

It is needed to make the constraint that the states at the end of each mesh grid are equal.

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

 	Package Functionality

 	Code Development

 	Completed Functionality

 	LGR Multiple Interval

Approximation of State Derivative at of Mesh Grids -> ex#3

In this example, the state derivative at the end of each mesh.

	where:

	
\[y(x) = -0.3x^2+3x-0.3\]

	with:

	Nc = Int64(3); # number of collocation points in each interval
Ni = Int64(2); # number of intervals

[image: ../../_images/test3a1.png]

Why Do We Need This Derivative At the End Point?

Actually, we do not need this. There is no constraint on state dynamics at the end of each mesh grid using the method discussed in [DGar11]. This is an important point, that is described here hp-psuedospectral method.

Now, we will look at the \(\mathbf{D}\) matrix used to calculate the derivatives above:

D =
4×4×2 Array{Float64,3}:
[:, :, 1] =
 -1.0 1.50639 -1.10639 0.6
 -0.210639 -0.155051 0.713568 -0.347878
 0.0506395 -0.233568 -0.644949 0.827878
 -0.0666667 0.276429 -2.00976 1.8

[:, :, 2] =
 -1.0 1.50639 -1.10639 0.6
 -0.210639 -0.155051 0.713568 -0.347878
 0.0506395 -0.233568 -0.644949 0.827878
 -0.0666667 0.276429 -2.00976 1.8

Notice that for each interval the \(\mathbf{D}\) matrix is actually identical. This is quite an interesting observation indeed, because different inputs where used to calculate it, these are the nodes.

For the first interval:

0.0
1.77526
4.22474
5.0

For the second interval:

5.0
6.77526
9.22474
10.0

These nodes depend on the interval \(t_0->t_f\) as well as the \(\tau\):

-1.0
-0.289898
 0.689898

Which are the LGR nodes when \(N_c=3\)

So, it seems that maybe we can calculate the weights beforehand as well as the \(\mathbf{D}\) matrix and cache the result.

Neglecting Derivative At End Of Mesh

For the purposes of using this method for control, again we do not need to calculate the derivative of the state at the ends of each mesh. So, we can remove the bottom row of the \(\mathbf{D}\) matrix as:

D =
[:, :, 1] =
 -1.0 1.50639 -1.10639 0.6
 -0.210639 -0.155051 0.713568 -0.347878
 0.0506395 -0.233568 -0.644949 0.827878

[:, :, 2] =
 -1.0 1.50639 -1.10639 0.6
 -0.210639 -0.155051 0.713568 -0.347878
 0.0506395 -0.233568 -0.644949 0.827878

[image: ../../_images/test3b1.png]
So, at the end of each mesh grid, we still approximate the state, but neglect it’s derivative.

References

	[DGar11]	Divya Garg. Advances in global pseudospectral methods for optimal control. PhD thesis, University of Florida, 2011.

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

 	Package Functionality

 	Code Development

 	Completed Functionality

 	LGR Multiple Interval

Higher Level Functionality -> ex#4

In this example, we are working on preparing the code for use with optimization by creating higher level functionality. Examine the IJulia notebook to see differences in code.

	where:

	
\[y(x) = -0.3x^2+3x-0.3\]

	with:

	Nc = Int64(3); # number of collocation points in each interval
Ni = Int64(2); # number of intervals

[image: ../../_images/test4a.png]

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

 	Package Functionality

 	Code Development

Developing Code

This site documents current progress and functionality that is being developed.

Current Focus

Old Records

This is for documentation that was created where something was still being worked on where:

	Everything was not working as expected, but has now been fixed or is obsolete.

	Removed Functionality

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	NLOptControl 0.0.1-rc1 documentation

Bibliography

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	NLOptControl 0.0.1-rc1 documentation

Index

 Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

 examples/LIP/ex2.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NLOptControl 0.0.1-rc1 documentation »

 		Package Functionality »

 		Code Development »

 		Completed Functionality »

 		Functionality »

Scaled Lagrange Polynomials-> ex#2

		where:

		
\[y(x) = x^3\]

and the interval from x=1 to x=3

		with:

		N = 2; # number of collocation points

Test 2a

[image: ../../_images/test2a2.png]

		Conclusions
		Each scaled Lagrange polynomial passes through a control point

		The final interpolating polynomial passes through each control point and is exact

 © Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

examples/LIP/ex3.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NLOptControl 0.0.1-rc1 documentation »

 		Package Functionality »

 		Code Development »

 		Completed Functionality »

 		Functionality »

Runge’s Phenomena-> ex#3

This example investigates Runge’s phenomena [https://en.wikipedia.org/wiki/Runge%27s_phenomenon].

		where:

		
\[y(x) = \frac{1}{1+25x^2}\]

and the interval from x0=-1 to xf=1

		with:

		N = order of Lagrange Polynomial
x_data = linspace(x0,xf,N+1);

[image: ../../_images/test3a2.png]

		Conclusions
		Be careful not to use too high of an N

To Mitigate Runge’s Phenomenon

		Could sample more near the end points

		Could use Chebyshev nodes [https://en.wikipedia.org/wiki/Chebyshev_nodes]

 © Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

examples/LIP/ex1.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NLOptControl 0.0.1-rc1 documentation »

 		Package Functionality »

 		Code Development »

 		Completed Functionality »

 		Functionality »

Simple Interpolation -> ex#1

In this first example, we demonstrate the functionality using the interpolating functionality.

		where:

		
\[y(x) = x^2\]

and the interval from x=1 to x=3

		with:

		N = 2; # number of collocation points

Test 1a

[image: ../../_images/test1a2.png]

		Conclusions
		Working as expected.

 © Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

_images/test3a.png
Poly(3 - 30x + 30x"2)
integral = 8.000
derivative

approx. integral = 8.000
tauwithN =3

approx. derivative

_images/test2c.png
-15

Poly(3 - 30x - 80x"~2 + 70x"3 + 30x"~4 - 30x"5 - 80x"6 + 70x"7)
integral = -0.419

approx. integral = -0.419

tau with N = 4

0 1

_images/test3e.png
Poly(3 - 30x + 30x™2 + 30x"~3 + 30x"4 + 30x"5 + 30x"6)
integral = 10.057

derivative

approx. integral = 10.240

tauwithN =3

approx. derivative

_images/test3a1.png
(@ Poly(-03 + 3.00x - 0.30x2)
! collocation points for mesh interval 1

collocation points for mesh interval 2
end points

2 4 6 8 10

[@ integral = 47.000

approx. integral = 47.000

[@® cervative
approximate derivative 1
approximate derivative 2

end points

2 4 6 8 10

_images/test2a2.png

_images/test3b1.png
(@ Poly(-03 + 3.00x - 0.30x2)
! collocation points for mesh interval 1

collocation points for mesh interval 2
end points

2 4 6 8 10

[@ integral = 47.000

approx. integral = 47.000

approximate derivative 1
approximate derivative 2

2 4 6 8 10

_images/test2a.png
-15

Poly(3 - 30x - 80x"~2 + 70x"3 + 30x"~4 - 30x"5 - 80x"6 + 70x"7)
integral = -0.419

approx. integral = -2.667

tau with N = 2

0 1

search.html

 Navigation

 		
 index

 		NLOptControl 0.0.1-rc1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Huckleberry Febbo.
 Created using Sphinx 1.3.5.

_images/test1a.png
(@ Poiy(3 - 30x + 30x~2 - 30x3 ¥ 30X~ - 30°5)
100000 ftau with Ni = 4
ftau with Ni = 4
200000 ftau with Ni = 4
ftau with Ni = 4
o B 10
o
(@ integral = 446620 000
100090 . approx. integral = -446620.000
200000 || = approx.integral = -446620.000
= approx. integral = 446620000
300000 = approx.integral = -446620 000
400000 |- ; :
o 2 O
@ dervative
= approx. derivative
50090 M m approx. denvative 1
= approx. derivative
100000 { = approx. derivative 4

_images/test4a.png
@ derivative
[approximate derivative 1
B approximate derivative 2 ||

_images/test1b.png
100000

200000

0
100000
200000
300000
400000

50000

100000

(@ Poly(3 - 30x + 30x~2 - 30x3 ¥ 30X~ - 30°5)

ftau with Ni = 2
ftau with Ni = 2

o B

10

[@® inteoral - -446620.000
= approx. integral = 446463 750
= approx. integral = 446463 750

@ dervative
= approx. derivative
= approx. derivative

10

_images/test2a1.png
(@ Poiy(3 - 30x + 30x2)
collocation points for mesh interval 1
collocation points for mesh interval 2
end points

200

100

_images/test1d.png
400000

200000

2000000

1000000

o

100000

50000

(@ Foiy(30x-80x~2 + 70x°3 + 30x~4)
@ ftauwith N = 10

@ nteoral
= _approx. integral

76127 350

2178127 350

o

@ dervative
= approx.derivative

20

_images/test3b.png
10

Poly(3 - 30x + 30x"2 + 30x"3)
integral = 8.000

derivative
approx. integral = 8.000
tauwithN =3

approx. derivative

_images/test3d.png
T T
Poly(3 - 30X + 30x~2 + 30x"3 + 30x™4 + 30x"5)
integral = 9.200

derivative

approx. integral = 9.200

tauwithN =3

30 approx. derivative

40

_images/test1c1.png
400000

200000

2000000

1000000

o

100000

50000

(@ Foiy(30x-80x~2 + 70x°3 + 30x~4)
@ fauwithN=4

g

0

@ nteoral
= _approx. integral

76127 350
2178127 350

o B

@ dervative
= approx.derivative

20

_images/test1c.png
100000

@ Poiy (3 30x + 3002 3003 + 3004 - 3005
200000 frau with Ni = 2
frau with Ni = 2
o g 10
° T
100000 || Mtegral = 436520000
E = approx.integral = -446620.000 1
200000 || = approx. integral = -445620.000 |
300000 [- 1
400000 |- ; i .
0 2 O G
0
@ derivative
approx. derivative
50000 approx. derivative 8
100000 [-

_images/test3a2.png

_images/test2b.png
-15

Poly(3 - 30x - 80x"~2 + 70x"3 + 30x"~4 - 30x"5 - 80x"6 + 70x"7)
integral = -0.419

approx. integral = -0.907

tauwithN =3

0 1

_images/test1b1.png
400000

200000

2000000

1000000

o

100000

50000

(@ Foiy(30x-80x~2 + 70x°3 + 30x~4)
@ fauwithN=3

g

@ nteoral

= _approx. integral

76127 350
2178127 350

o

1

@ dervative

= approx.derivative

20

_images/test1.png
Poly(3 - 30x - 80x"2 + 7|]x"3)v

=== integral = 0.667
=== approx. integral = 0.667
@ tauwithN=2
T T
-1 0 1

_images/test1a1.png
(@ Poly(3 - 30x - 80x~2 + 70x"3 + 30x~4)
400000 || @ frau with N = 2 1

200000

- o 20

2000000 g ntegral = 2178127 350 :

= approx. integral

1000000

o

100000 T "
T

= approx. derivative

50000

20

_images/test3c.png
Poly(3 - 30x + 30x~2 + 30x"3 + 30x"4)
integral = 9.200

derivative

approx. integral = 9.200

tau with N =3 .

20

approx. derivative ’

_static/comment-close.png

_static/comment-bright.png

_images/test1a2.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/up.png

_static/down-pressed.png

_static/down.png

